Calvin Cycle Notes

Plants...

...need to produce all organic molecules necessary for growth

carbohydrates, lipids, proteins, nucleic acids

...need to store chemical energy (ATP) produced from light reactions

- in a more stable form
- that can be moved around plant
- saved for a rainy day

Light Reactions

Convert solar energy to chemical energy

- ATP
- NADPH

What can we do now?

Want to make $C_6H_{12}O_6$?

- <u>synthesis</u>
- How? From what?What raw materials are available?

CO₂ has very little chemical energy

fully oxidized

C₆H₁₂O₆ contains a lot of chemical energy

highly reduced

Synthesis = endergonic process

put in a lot of energy

Reduction of $CO_2 \rightarrow C_6H_{12}O_6$ proceeds in many small uphill steps

- each catalyzed by a specific enzyme
- using energy stored in ATP & NADPH

Calvin cycle

• chloroplast stroma

Need products of light reactions to drive synthesis reactions

- ATP
- NADPH

Glyceraldehyde-3-P

- · end product of Calvin cycle
- energy rich 3 carbon sugar
- "C3 photosynthesis"

G3P is an important intermediate

G3P
$$\rightarrow \rightarrow$$
 glucose $\rightarrow \rightarrow$ carbohydrates
 $\rightarrow \rightarrow$ lipids $\rightarrow \rightarrow$ phospholipids, fats, waxes
 $\rightarrow \rightarrow$ amino acids $\rightarrow \rightarrow$ proteins
 $\rightarrow \rightarrow$ nucleic acids $\rightarrow \rightarrow$ DNA, RNA

RuBisCo = <u>ribulose bisphosphate carboxylase</u>

Enzyme which fixes carbon from air

- the most important enzyme in the world!
 - it makes life out of air!
- definitely the most abundant enzyme

- 3 turns of Calvin cycle = 1 G3P
- 3 $CO_2 \rightarrow 1 G3P (3C)$
- 6 turns of Calvin cycle = $1 C_6H_{12}O_6$ (6C)
- $6 \text{ CO}_2 \rightarrow 1 \text{ C}_6 \text{H}_{12} \text{O}_6 \text{ (6C)}$
- 18 ATP + 12 NADPH \rightarrow 1 C₆H₁₂O₆
- any ATP left over from light reactions will be used elsewhere by the cell

Summary:

- · Light reactions
 - produced ATP
 - produced NADPH
 - consumed H₂O
 - produced O₂ as byproduct

- Calvin cycle
 - consumed CO₂
 - produced G3P (sugar)
 - regenerated ADP
 - regenerated NADP