Mitosis

Why divide? • Reproduction			
Growth			
• Repair			
	Nucleus		Cytoskeleton
Function:		Structural support	
		Motility	
Structure:		Regulation	
Centrioles			
in animal cells, pair of		organize	
guide chr	omosomes in		
What gets passed on?			

	well-defined	
•	DNA loosely packed in long	fibers
Prepares fo	r mitosis	
•	chromosome	
	DNA & proteins	
•	produces	

S Phase "S" is for •

- dividing cell _____
- must separate DNA copies correctly to 2 daughter cells
 - human cell duplicates ~3 meters DNA
 - each daughter cell gets complete identical copy
 - error rate = ~1 per 100 million bases
 - 3 billion base pairs in mammalian genome
 - ~30 errors per cell cycle
 - mutations (to somatic (body) cells)

Organizing DNA

- double helix _____ molecule
- wrapped around
- DNA-protein complex =

After DNA duplication, ______

Mitosis:

4 Phases:

Prophase: Chromatin condenses chromatids Early mitotic spindle Centromere move to opposite poles of cell animal cell Protein fibers cross cell to form • actin, myosin coordinates movement of chromosomes Prometaphase • creating _____ microtubules attach at kinetochores • connect _____ to____ Metaphase • meta = spindle fibers coordinate movement helps to ensure chromosomes separate properly each new nucleus receives only 1 copy of each chromosome Anaphase at kinetochores move to opposite poles pulled at centromeres pulled by _____ "walking" along _____ actin, myosin • increased production of Poles move farther apart

polar microtubules lengthen

Chromosome Movement

Kinetochores use motor proteins that

"walk" chromosome along attached microtubule

 microtubule shortens by dismantling at _____ (chromosome) end.

Telophase

- Chromosomes arrive at opposite poles
 - _____
 - nucleoli form
 - •
- no longer visible under light microscope
- Spindle fibers disperse
- _____begins

(a) Hypothesis

(b) Experiment

Cytokinesis

- Animals
 - constriction belt of _____
 around equator of cell
 - _____ forms
 - splits cell in two
 - like tightening a draw string

Evolution of mitosis

- Mitosis in eukaryotes
 likely evolved from ______ in bacteria
 - single circular chromosome
 - no membrane-bound organelles

